グラフの増減を調べるために微分をすればOKという理屈を紹介します。
接線の傾きとは?
接線の傾きは、その点におけるf'の値を意味します。
- f'が正なら接線の傾きは正よりfは単調増加
- f'が負なら接線の傾きは負よりfは単調減少
- f'が0なら接線の傾きは0よりfは一定値
この理屈からf'の符号変化がfの増減を決定しているのです。
3次関数の書き方
詳しい3次関数は次回にまわすとして、今日は簡単に書ける方法を紹介します。
会話相手
この方法って結構な瞬殺ですよねw
- 微分する
- f'のグラフを書いてそれを見ながらfの増減を一瞬で書く
- fのグラフを座標平面に埋め込む
以上です。
微分って面白くないですか?!